Таблица квадратов или таблица возведения чисел во вторую степень. Интерактивная таблица квадратов и изображения таблицы в высоком качестве.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | ||
1 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 361 |
2 | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729 | 784 | 841 |
3 | 900 | 961 | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
4 | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
5 | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
6 | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
7 | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
8 | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
9 | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |
Таблица квадратов
Теория
Квадрат числа – это результат умножения числа само на себя. Операция вычисления квадрата числа – это частный случай возведения числа в степень, в данном случае во вторую:
Данное выражение читается: «возвести в квадрат число 6» или «6 в квадрате».
Скачать таблицу квадратов
- Нажмите на картинку чтобы посмотреть в увеличенном виде.
- Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.
Понятие квадрата обобщается на произвольные мультипликативные группы. В частности, в кольцах вычетов квадратам соответствуют квадратичные вычеты.
См. также
Примечания
- ↑ K. Brown. No Four Squares In Arithmetic Progression (англ.)
Ссылки
Wikimedia Foundation . 2010 .
Смотреть что такое "Квадратное число" в других словарях:
КВАДРАТНОЕ ЧИСЛО — (от лат. quadratum. квадрат). Произведете какого нибудь числа, помноженного само на себя. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КВАДРАТНОЕ ЧИСЛО от лат. quadratum, квадрат. Произведение какого нибудь… … Словарь иностранных слов русского языка
Центрированное квадратное число — – это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки находятся на квадратных слоях. Таким образом, каждое центрированное квадратное число равно числу точек внутри данного… … Википедия
Квадратное пирамидальное число — Геометическое представление квадратного пирамидального числа: 1 + 4 + 9 + 16 = 30. В математике пирамидальное чис … Википедия
Квадратное уравнение — Квадратное уравнение алгебраическое уравнение общего вида где свободная переменная, , , коэффициенты, причём Выражение называют квадратным трёхчленом. Корень такого ура … Википедия
100 (число) — 100 сто 97 · 98 · 99 · 100 · 101 · 102 · 103 70 · 80 · 90 · 100 · 110 · 120 · 130 200 · 100 · 0 · 100 · 200 · 300 · 400 Факторизация: 2×2×5×5 … Википедия
200 (число) — 200 двести 197 · 198 · 199 · 200 · 201 · 202 · 203 170 · 180 · 190 · 200 · 210 · 220 · 230 100 · 0 · 100 · 200 · 300 · 400 · 500 … Википедия
Треугольное число — Треугольное число это число кружков, которые могут быть расставлены в форме равностороннего треугольника, см. рисунок. Очевидно, с чисто арифметической точки зрения, n е треугольное число это сумма n первых натуральных чисел.… … Википедия
30 (число) — 30 тридцать 27 · 28 · 29 · 30 · 31 · 32 · 33 0 · 10 · 20 · 30 · 40 · 50 · 60 Факторизация: 2×3×5 Римская запись: XXX Двоичное: 1 1110 … Википедия
Квадрат (число) — Квадрат или квадратное число целое число, которое может быть записано в виде квадрата некоторого другого целого числа (иными словами, число, квадратный корень которого целый). Геометрически такое число может быть представлено в виде площади … Википедия
10 (число) — У этого термина существуют и другие значения, см. 10 (значения). 10 десять 7 · 8 · 9 · 10 · 11 · 12 · 13 20 · 10 · 0 · 10 · 20 · 30 · 40 Факторизация: 2×5 Римская запись: X Двоичное … Википедия
Квадратом называется вторая степень любого действительного или комплексного числа. Например, 3 2 можно назвать «три во второй степени», «три в квадрате» или «квадрат числа три». Происхождение этого названия берет свое начало из геометрии Пифагора, где для нахождения площади квадрата необходимо умножить его сторону саму на себя, таким образом, возведя ее во вторую степень. Со временем эти два понятия стали взаимозаменяемы, и сейчас вторая степень называется квадратом. Чтобы найти квадрат любого двузначного числа, используя таблицу, необходимо найти строку с цифрой десятков и столбец с цифрой единиц, на их пересечении будет находиться число-квадрат. Выделенные строка и столбец подсвечиваются цветом. Ниже таблицы приведены примеры для нахождения квадрата числа, разделенные на столбцы по десяткам.