Чему равна мощность излучения

Чему равна мощность излучения

Абсолютно чёрное тело — физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах. Коэффицент поглощения равен 1.

Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Рис.1. Модель абсолютно черного тела

Первый закон излучения Вина:

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где uν — плотность энергии излучения,

ν — частота излучения,

T — температура излучающего тела,

f — функция, зависящая только от отношения частоты к температуре. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Второй закон излучения Вина:

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

где C1, C2 — константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн).

Закон Рэлея — Джинса:

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея — Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка

где R (v, T) — мощность излучения на единицу площади излучающей поверхности в единичном интервале частот (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ).

Закон Стефана — Больцмана:

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

Таким образом, абсолютно чёрное тело при <displaystyle T>T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности.

Цветность чернотельного излучения:

Температурный интервал в кельвинах

Квантовый характер теплового излучения. Формула Планка. Оптическая пирометрия.

После установления законов излучения стало очевидно, что первоочередная задача теории теплового излучения состоит в нахождении вида функции Кирхгофа, т.е. выяснение спектрального состава равновесного излучения абсолютно черного тела. Решение этой задачи вышло далеко за рамки теории излучения и сыграло огромную роль во всем дальнейшем развитии физики, т.к. привело к установлению квантового характера излучения и поглощения энергии атомами и молекулами.

Формула Планка — выражение для спектральной плотности мощности излучения (спектральной плотности энергетической светимости) абсолютно чёрного тела, которое было получено Максом Планком для плотности энергии излучения u(w,T)

Формула Планка («форма» зависимости <displaystyle u>h от частоты и температуры), первоначально, была «выведена» эмпирически. Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса (которая следует из классической теории электромагнитного поля) удовлетворительно описывает излучение только в области длинных волн. С убыванием длин волн формула Рэлея—Джинса сильно расходится с эмпирическими данными; более того, в пределе она даёт расхождение: бесконечную энергию излучения (ультрафиолетовая катастрофа). В связи с этим Планк в 1900 году сделал предположение, противоречащее классической физике, что электромагнитное излучение испускается в виде отдельных порций (квантов) энергии, величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности h, впоследствии назвали постоянной Планка, h = = 1,054 · 10 −27 эрг·с.

Правильность формулы Планка подтверждается не только непосредственной эмпирической проверкой, но и следствиями из данной формулы; в частности, из неё следует закон Стефана — Больцмана (также эмпирически подтверждённый). Кроме того, из неё выводятся также и приблизительные формулы, полученные до формулы Планка: формула Вина и формула Рэлея — Джинса.

Оптическая пирометрия — методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. В зависимости от того, какой закон теплового излучения используется при измерении тем­пературы тел, различают радиационную, цветовую и яркостную температуры.

<displaystyle u(omega ,T)>пр Радиационная температура — это такая температура черного тела, при которой его энергетическая светимость равна энергетической светимости исследуемого тела. В данном случае регистрируется энергетическая светимость исследуемого тела и по закону Стефана – Больцмана вычисляется его радиационная температура:

Цветовая температура. Для серых тел (или тел, близких к ним по свойствам) спектральная плотность энергетической светимости

Яркостная температуря Тя. — это температура черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела, т. е.

Читайте также:  Word автоматическая проверка орфографии

где Т — истинная температура тела. В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью. В данном случае изображение нити пирометра становится неразличимым на фоне поверхности раскаленного тела. Используя проградуированный по черному телу миллиамперметр, можно определить яркостную температуру.

3.Принцип измерений распределения потока излучения по спектру. 4.Спектральная интенсивность потока излучения. 5. Энергетические величины.

Мощность (или поток) излучения принимают энергию, переносимую в единицу времени. Измеряется в ваттах (Вт). Часто свойства излучения выражают не только общей мощностью, но и ее распределением по спектру (рис. 1.2).

Для характеристик спектрального распределения потока излучения с непрерывным спектром пользуются величиной, называемой спектральной интенсивностью (или спектральной плотностью) излучения .

Выделим на кривой спектрального распределения потока излучения некоторый конечный интервал длин волн, на который приходится мощность излучения . Тогда

и

Зная распределение функции по спектру, можно определить поток излучения любого участка спектра в интервале :

Если

Тогда формула примет вид, выражающий суммарную мощность излучения с непрерывным спектром:

Сила света (I). В светотехнике эта величина принята за основную. Такой выбор не имеет принципиальной основы, а сделан из соображений удобства, так как сила света не зависит от расстояния. Под энергетической силой света в данном направлении понимают поток излучения, приходящийся на единицу телесного угла.

В энергетических единицах где — телесный угол, выраженный в стерадианах (ср).Энергетическая сила света выражается в ваттах на стерадиан (Вт/ср).

Телесный угол. Телесным углом называется часть пространства, ограниченная конической поверхностью и замкнутым криволинейным контуром, не проходящим через вершину угла (рис. 1.4).

Освещенность (Е). Под энергетической освещенностью понимают поток излучения на единицу площади освещаемой поверхности Q:

Энергетическая освещенность выражается в .

Светимость (R). Под светимостью соответственно для энергетических и световых величин понимают полный поток излучения, испускаемый с единицы площади светящейся или отражающей поверхности.

,

Яркость (В). Под энергетической яркостью ( ) источника излучения в данном направлении понимают энергетическую силу света источника в этом направлении, отнесенную, к единице площади проекции его поверхности на плоскость, перпендикулярную данному направлению:

Единицей измерения является .Связав значение с основной величиной — потоком излучения Ф и учитывая, что , получим

Яркость характеризует не только источники, непосредственно излучающие свет, но и вторичные источники — тела, отражающие свет от первичного источника.

Энергия излучения измеряется в джоулях или .

где Ф(t) функция изменения потока излучения во времени.

Энергетическая экспозиция — поверхностную плотность энергии излучения на освещаемой поверхности. Единицей измерения является .

В случае фиксированных значений и с учетом того, что :

Вопрос №2.

6. Понятие о приемнике излучения. 7. Реакции приемника. 8. Классификация приемников излучения. 10. Спектральная чувствительность приемника излучения. 11. Особенность глаза как приемника. 12. Световой поток(F).13. Связь светового потока с потоком излучения. 14. Кривая видности.

6.В результате поглощения света в средах и телах возникает целый ряд явлений:

• Тело, поглотившее излучение, само начинает излучать. При этом вторичное излучение может иметь другой спектральный диапазон, по сравнению с поглощенным. Например, при освещении ультрафиолетовым светом тело испускает видимый свет.

• Энергия поглощенного излучения переходит в электрическую энергию, как в случае фотоэффекта, или производит изменение электрических свойств материала, что происходит в фотопроводниках. Такие превращения называют фотофизическими.

• Другой тип фотофизического превращения — переход энергии излучения в тепловую энергию. Это явление нашло применение в термоэлементах, используемых для измерения мощности излучения.

• Энергия излучения переходит в химическую энергию. Происходит фотохимическое превращение поглотившего свет вещества. Такое преобразование происходит в большинстве светочувствительных материалов.

7. Тела, в которых происходят такие преобразования под действием оптического излучения, получили в светотехнике общее название "приемники излучения".

8. Классификация приемников излучения.

Условно приемники излучения можно разбить на три группы.

1. Естественным приемником излучения является человеческий глаз.

2. Целую группу приемников излучения составляют светочувствительные материалы, традиционными или цифровыми методами: проекционной съемкой, контактным копированием, поэлементной записью изображения с помощью лазеров или светодиодных линеек.

3. Приемниками являются также светочувствительные элементы измерительных приборов (денситометров, колориметров, спектрофотометров др.) и датчиков оптических контрольных устройств, используемых в полиграфическом оборудовании.

10. Спектральная чувствительность приемника излучения.

Спектральная чувствительность зависит от длины волны.

S=cPλ эф./Φλ и Pλ эф.=kΦλSλ (для монохроматических излучений)

Величины Φλ и Pλ называют соответственно монохроматическим потоком излучения и монохроматическим эффективным потоком, а Sλ — монохроматической спектральной чувствительностью.

Читайте также:  Как настроить роутер ростелеком на компьютере

Большая часть используемых в светотехнике и полиграфии приемников имеет ограниченную область спектральной чувствительности. Так, человеческий глаз чувствителен к «видимой» зоне спектра (от 400 до 700 нм), фототехнические пленки – к ближней ультрафиолетовой и видимой зонам, а копировальные слои – к ультрафиолетовой и синей зонам спектра.

Вопрос №3 Особенность глаза как приемника. Световой поток(F).

Его Связь с потоком излучения. Кривая видности. Связь К и Vλ и их определние. Световые величины Различие светового и энергетического потоков в диапазоне 400-700 нм.

11. Особенность глаза как приемника.

Действие светового потока на глаз вызывает определенную реакцию. В зависимости от уровня действия светового потока работает тот или иной вид светочувствительных приемников глаза, называемых палочками или колбочками. К условиях низкого уровня освещенности глаз видит окружающие предметы за счет палочек. При высоких уровнях освещенности начинает работать аппарат дневного зрения, за который ответственны колбочки. Кроме того, колбочки по своему светочувствительному веществу делятся на три группы(красночувствительные, зеленочувствительные и синечувствительные) с разной чувствительностью в различных областях спектра. Поэтому в отличие от палочек они реагируют не только на световой поток, но и на его спектральный состав. В связи с этим можно сказать, что световое действие двумерно. Количественная характеристика реакции глаза, связанная с уровнем освещения, называется светлотой. Качественная характеристика, связанная с различным уровнем реакции трех групп колбочек, называется цветностью.

12. Световой поток(F).

Под световым потоком понимают мощность излучения, оцененную по его действию на человеческий глаз. Единицей измерения светового потока является люмен (лм).

13. Связь светового потока с потоком излучения.

Для монохроматического излучения:

Для интегрального излучения:

F=680ʃύλΦλdλ (под знаком интеграла λ=380нм, а над знаком интеграла λ=780нм).

14. Кривая видности.

Важной характеристикой, имеющей практический интерес, является кривая распределения относительной спектральной чувствительности глаза (относительной спектральной световой эффективности) при дневном свете ύλ=ƒ(λ)

ύλ=Vλ/Vλ max,

где Vλ и Vλ max – абсолютные значения чувствительности глаза к излучению с длиной волны λ и максимальной чувствительности глаза.

В условиях дневного освещения максимальную чувствительность человеческий глаз имеет к излучению с λ=555нм (ν555 =1).

400 500 600 λ, нм

15. Связь К и Vλ и их определние

Vλ-абсолютное значение чувствительности глаза к излучению с длиной волны λ. Установлено, что в условиях дневного освещения максимальную чувствительность человеческий глаз имеет к излучению с λ= 555 нм(V555=1).При этом на каждую единицу светового потока с F 555 приходится мощность излучения Ф 555=0,00146 Вт. Отношение светового потока F 555 к Ф 555 называется спектральной световой эффективностью: к= F 555/ Ф 555= 680[лм/Вт] Для любой длины волны излучения видимого диапазона к=const.

Световые величины

Существует 2 системы единицы : энергетическая и световая. К световым величинам относятся: 1)Световой поток(F)- мощность излучения, оцененная по его действию на человеческий глаз. Ед.измерения-люмен(лм). 2)Освещенность(Е) – световой поток, падающий на единицу площади освещаемой поверхности(Q). Ед.изм-ия- люкс.За единицу освещенности принята освещенность, которую создает равномерно распределенный световой поток в 1лм на 1 м(в квадрате) поверхности. Е= ∂F/∂Q 3) Светимость (R)- полный поток излучения (световой поток), испускаемый с единицы площади светящейся или отражающей поверхности. Ед.изм-ия – лм/м(квадрат) R=∂F/∂Q.4) Яркость(В)- В=

Единица изм-ия- кд/м(квадрат) 5) Световая энергия(W) W=∫F(t)∂t, лм*с 6) световая экспозиция( Н)- поверхностная плотность световой энергии на освещаемой поверхности H=E*t, лк*с

Дата добавления: 2016-05-16 ; просмотров: 1983 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Реферат по дисциплине

тема: «Абсолютно черное тело»

Выполнил: студент гр. ОБДзс-07

Кобаснян Степан Сергеевич Проверил: преподаватель дисциплины

Сидорова Анастасия Эдуардовна

Абсолютно чёрное тело — физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Термин был введён Густавом Кирхгофом в 1862.

Читайте также:  Лучшие программы шпионы для андроид

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином "закон смещения Вина" называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2. С учётом этого, второй закон Вина можно записать в виде:

Закон Релея — Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Релея — Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея — Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея — Джинса при

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где I(ν)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + dν.

где u(λ)dλ — мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + dλ.

Закон Стефана — Больцмана

Общая энергия теплового излучения определяется законом Стефана — Больцмана:

где j — мощность на единицу площади излучающей поверхности, а

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где T — температура в кельвинах, а λmax — длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна

Ссылка на основную публикацию
Хрипит динамик на телефоне при прослушивании
Одной из самых распространенных поломок мобильных аппаратов является выход из строя динамика. Любой пользователь мобильных телефонов знает, что сейчас производители...
Установить программу для сканирования документов бесплатно
Загрузите бесплатно пробную полнофункциональную версию программы для сканирования Scanitto Pro. Данная версия работает без каких-либо ограничений в течение 30 дней....
Установить протокол mtp media transfer protocol
Описание Компания Microsoft содержит под своим крылом множество драйверов, среди этой коллекции находится и Media Transfer Protocol, тот самый драйвер,...
Хэнкок из какой вселенной комиксов
Хэнкок Общая информацияЖанр Научная фантастика Драма Комедия Страна производстваСШАКиностудия Columbia Pictures РежиссёрПитер БергАвтор сценария Винс Джиллиган Винсент Нго Когда вышел2008...
Adblock detector